On 2-blocks of finite groups with elementary abelian defect groups of order 8

Radha Kessar
University of Aberdeen
(joint work with Shigeo Koshitani (Chiba) and Markus
Linckelmann(Aberdeen))

September 7, 2010

Introduction

k : alg. closed field of characteristic $p>0, G$: finite group. The group algebra $k G$ decomposes uniquely into a product of indecomposable factors $k G=\prod_{i} B_{i}$; the B_{i} are the blocks of $k G$.

- If P is a Sylow p-subgroup of G, then for any block B of $k G$, the map

$$
B \otimes_{k P} B \rightarrow B, x \otimes y \rightarrow x y, x, y \in B
$$

splits as map of (B, B)-bimodules:

$$
z \rightarrow \frac{1}{|G: P|} \sum_{g \in G / P} z g \otimes g^{-1}, z \in B \text { is a splitting. }
$$

A defect group of B is a p-subgroup P of G minimal such that $B \otimes_{k P} B \rightarrow B$ splits as map of (B, B)-bimodules.

- The defect groups of B are unique upto conjugation in G.
- B has trivial defect group if and only if B is a matrix algebra over k.
- $k G$ has blocks with non-trivial defect groups if and only if $p \| G \mid$.

Example 1. $G=S_{3}$

- If $p \geq 5$ (or $p=0$),

$$
k S_{3}=k \times k \times \operatorname{Mat}_{2}(k) ;
$$

all defect groups are trivial

- If $p=2$,

$$
k S_{3}=\operatorname{Mat}_{2}(k) \times k C_{2}
$$

defect groups are $\{1\}$ and C_{2} respectively

- If $p=3, k S_{3}$ is a block with defect group C_{3}.

Example 2. $G=2 M_{22}, p=3$.
$|G|=2^{8} \times 3^{2} \times 5 \times 7 \times 11=887040$.
Sylow 3-subgroups of G are elementary abelian, so possible defect groups are $1, C_{3}, C_{3} \times C_{3}$.
There are 9 blocks:

B	$\operatorname{dim}_{k} B$	defect group
B_{1}	2025	1
B_{2}	2025	1
B_{3}	9801	1
B_{4}	15786	1
B_{5}	15786	1
B_{6}	97902	C_{3}
B_{7}	167400	C_{3}
B_{8}	244368	$C_{3} \times C_{3}$
B_{9}	331767	$C_{3} \times C_{3}$

B : block of $k G, P$: defect group of B.
Problem : Describe the module category $\bmod (B)$ of B of $k G$ in terms of "local structure", i.e., $P+\cdots$.

Conjecture. (Donovan '87)
For a fixed P, there are only finitely many possibilites for $\bmod (B)$.

- If $P=1$, then $B=\operatorname{Mat}_{n}(k)$, hence $\bmod (B) \sim \bmod (k)$.

Example 2. $G=2 M_{22}, p=3 ; 4$ blocks with non-trivial defect groups:

B	B_{6}	B_{7}	B_{8}	B_{9}
$\operatorname{dim}_{k} B$	97902	167400	244368	331767
P	C_{3}	C_{3}	$C_{3} \times C_{3}$	$C_{3} \times C_{3}$

- $\bmod \left(B_{6}\right) \sim \bmod \left(B_{7}\right) \sim \bmod \left(k P \rtimes C_{2}\right)$ (Brauer-Dade cyclic block theory '66)
- $\bmod \left(B_{8}\right) \sim \bmod \left(k P \rtimes Q_{8}\right)$ (Danz-Külshammer, 2008)
- The derived bounded module category
$D^{b} \bmod \left(B_{9}\right) \sim D^{b} \bmod \left(k P \rtimes Q_{8}\right)$ (Okuyama, '98)
B : block of $k G, P$: defect group of $B, Z(B)$: the center of B
$\zeta_{B}: \operatorname{dim}_{k} Z(B), \ell_{B}:$ number of isomorphism classes of simple B-modules.
- $\ell_{B}, Z(B)$ and ζ_{B} are invariants of $\bmod (B)$ and of $D^{b} \bmod (B)$.
- ζ_{B} is the number of ordinary irreducible characters of G lying in the block B.
- $\ell_{B} \leq \zeta_{B} \leq \frac{1}{4}|P|^{2}+1$ (Brauer-Feit, '56).
B : block of $k G, P$: defect group of B
- $P=1, \ell_{B}=\zeta_{B}=1$.
- P cyclic, $\ell_{B}=e, \zeta_{B}=e+\frac{|P|-1}{e}$, some $e \mid p-1$ (Brauer, Dade, '66).
- $p=2, P$ Klein 4-group, dihedral, semi-dihedral or generalised quaternion, $\ell_{B}=1$ or $3, \exists$ formulae for ζ_{B} (Brauer, Olsson '74).
- P admits only the trivial fusion system (e.g. $P=C_{4} \times C_{2}$), $\ell_{B}=1, \zeta_{B}=\zeta_{k P}$ (Broué-Puig, '80).

Theorem (K-Koshitani-Linckelmann, 2010) If $P=C_{2} \times C_{2} \times C_{2}$, then $\zeta_{B}=8$ and $\ell_{B}=1,3,4$ or 7 .
What took so long? CFSG + modular analogues of
Deligne-Lusztig theory.

Local-global conjectures

Brauer's first main theorem
There is a bijection $B \leftrightarrow \tilde{B}$ between the set of blocks B of $k G$ with P as a defect group and the set of blocks \tilde{B} of $k N_{G}(P)$ with P as a defect group.
The bijection can be explicitly described: Write

$$
1_{B}=\sum_{g \in G} \alpha_{g} g, \alpha_{g} \in k .
$$

Then,

$$
1_{\tilde{B}}=\sum_{g \in C_{G}(P)} \alpha_{g} g .
$$

\tilde{B} is the Brauer correspondent of B.
B : block of $k G, \tilde{B}$: Brauer correspondent of B, a block of $k N_{G}(P)$
Theorem (Kulshammer) $\bmod (\tilde{B}) \sim \bmod \left(k_{\alpha} P \rtimes E\right)$ for a p^{\prime}-subgroup
$E \leq N_{G}(P) / C_{G}(P) \leq \operatorname{Aut}(P)$ and an element $\alpha \in H^{2}\left(E, k^{*}\right)$.
The group E is the inertial quotient of B.
Weight Conjecture, abelian case (Alperin, '87)
Suppose P abelian. Then $\ell_{B}=\ell_{\tilde{B}}$.
(General version of Alperin's weight conjecture involves Brauer correspondents of B in groups $N_{G}(Q)$ for proper subgroups Q of P.)
The above conjecture (in the abelian case) is implied by:
Abelian Defect Group Conjecture (Broué, '88)
Suppose P abelian. Then $D^{b} \bmod (B) \sim D^{b} \bmod (\tilde{B})$.

Example 2. $G=2 M_{22}$, $\operatorname{char}(k)=3 ; 4$ blocks with non-trivial defect groups:

$$
\begin{array}{c|c|c|c|c}
B & B_{6} & B_{7} & B_{8} & B_{9} \\
P & C_{3} & C_{3} & C_{3} \times C_{3} & C_{3} \times C_{3} \\
E & C_{2} & C_{2} & Q_{8} & Q_{8} \\
\alpha & 1 & 1 & 1 & 1
\end{array}
$$

- $\bmod \left(B_{6}\right) \sim \bmod \left(B_{7}\right) \sim \bmod \left(k P \rtimes C_{2}\right)$ (Brauer-Dade cyclic block theory '66)
- $\bmod \left(B_{8}\right) \sim \bmod \left(k P \rtimes Q_{8}\right)$ (Danz-Külshammer, 2008)
- The derived bounded module category $D^{b} \bmod \left(B_{9}\right) \sim D^{b} \bmod \left(k P \rtimes Q_{8}\right)$ (Okuyama, '98)

So, abelian defect group conjecture and weight conjecture hold for $2 M_{22}, p=3$.

Abelian defect group conjecture known to hold if P cyclic, $P=C_{2} \times C_{2}$ (Rickard ' 86), or if P admits only trivial fusion system (Puig '80).
In addition, weight conjecture known to hold if P is dihedral, semi-dihedal or generalised quaternion (Brauer-Olsson '74).
Theorem (K-Koshitani-Linckelmann, 2010)
If $P=C_{2} \times C_{2} \times C_{2}$, then $\zeta_{B}=8$ and $\ell_{B}=1,3,4$ or 7 .
is really
Theorem'
If $P=C_{2} \times C_{2} \times C_{2}$, then B and \tilde{B} are isotypic. In particular, $Z(B) \cong Z(\tilde{B})$ and $\ell_{B}=\ell_{\tilde{B}}$.

- First case of weight conjecture for all blocks with a given defect group since conjecture was announced.
- Only known case of weight conjecture where the defect group is of wild representation type and admits non-trivial fusion.
- Abelian defect group conjecture still open for $P=C_{2} \times C_{2} \times C_{2}$.

Idea of proof

$P=C_{2} \times C_{2} \times C_{2}, \tilde{B}:$ Brauer correspondent of $B, E:$ inertial quotient of B, p^{\prime}-subgroup of $\operatorname{Aut}(P)$.
(I) Theorem' is equivalent to Theorem.

- (Rouquier '97) There is a stable equivalence of Morita type between B and \tilde{B}.
(II) Theorem' true if true for blocks of quasi-simple groups.
- (Landrock , '81) Theorem' true unless $E \cong C_{7}$ or $E \cong F_{21}$ and $\zeta_{B}=5,7$.
(III) Theorem' true for blocks of quasi-simple groups.
- There are "very few" non-nilpotent blocks of $k G, G$ a quasi-simple group which have for defect group an elementary abelian 2 -group of rank ≥ 3. (Uses Fong-Srinivasan, Broué-Malle-Michel, Cabanes-Enguehard, Bonnafé-Rouquier, Geck-Hiss)

