On 2-blocks of finite groups with elementary abelian defect groups of order 8

Radha Kessar University of Aberdeen (joint work with Shigeo Koshitani (Chiba) and Markus Linckelmann(Aberdeen))

September 7, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction

k: alg. closed field of characteristic p > 0, *G*: finite group. The group algebra *kG* decomposes uniquely into a product of indecomposable factors $kG = \prod_i B_i$; the B_i are the *blocks of kG*.

• If P is a Sylow p-subgroup of G, then for any block B of kG, the map

$$B \otimes_{kP} B \to B, \ x \otimes y \to xy, \ x, y \in B$$

splits as map of (B, B)-bimodules:

$$z
ightarrow rac{1}{|G:P|} \sum_{g \in G/P} zg \otimes g^{-1}, \; z \in B \; \text{is a splitting.}$$

A *defect group* of *B* is a *p*-subgroup *P* of *G* minimal such that $B \otimes_{kP} B \to B$ splits as map of (B, B)-bimodules.

- The defect groups of *B* are unique upto conjugation in *G*.
- *B* has trivial defect group if and only if *B* is a matrix algebra over *k*.
- kG has blocks with non-trivial defect groups if and only if p||G|.

Example 1. $G = S_3$

$$kS_3 = k \times k \times Mat_2(k);$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

all defect groups are trivial

• If p = 3, kS_3 is a block with defect group C_3 .

Example 2. $G = 2M_{22}$, p = 3. $|G| = 2^8 \times 3^2 \times 5 \times 7 \times 11 = 887040$. Sylow 3-subgroups of *G* are elementary abelian, so possible defect groups are 1, C_3 , $C_3 \times C_3$. There are 9 blocks:

В	dim _k B	defect group
<i>B</i> ₁	2025	1
<i>B</i> ₂	2025	1
<i>B</i> ₃	9801	1
B_4	15786	1
B_5	15786	1
B_6	97902	C_3
B 7	167400	C_3
<i>B</i> ₈	244368	$C_3 imes C_3$
B_9	331767	$C_3 imes C_3$

(日) (日) (日) (日) (日) (日) (日)

B: block of kG, P: defect group of B.

Problem : Describe the module category mod(B) of *B* of *kG* in terms of "local structure", i.e., $P + \cdots$.

Conjecture. (Donovan '87) For a fixed P, there are only finitely many possibilites for mod(B).

▶ If P = 1, then $B = Mat_n(k)$, hence $mod(B) \sim mod(k)$.

(日) (日) (日) (日) (日) (日) (日)

Example 2. $G = 2M_{22}$, p = 3; 4 blocks with non-trivial defect groups:

▶ mod(B₆) ~ mod(B₇) ~ mod(kP ⋊ C₂) (Brauer-Dade cyclic block theory '66)

- ▶ $mod(B_8) \sim mod(kP \rtimes Q_8)$ (Danz-Külshammer, 2008)
- ► The derived bounded module category $D^b \text{mod}(B_9) \sim D^b \text{mod}(kP \rtimes Q_8)$ (Okuyama, '98)

B : block of kG, P : defect group of B, Z(B) : the center of B

 ζ_B : dim_k*Z*(*B*), ℓ_B : number of isomorphism classes of simple *B*-modules.

▶ ℓ_B , Z(B) and ζ_B are invariants of mod(B) and of $D^b mod(B)$.

- *ζ_B* is the number of ordinary irreducible characters of *G* lying in the block *B*.
- $\ell_B \le \zeta_B \le \frac{1}{4} |P|^2 + 1$ (Brauer-Feit, '56).

B: block of kG, P: defect group of B

•
$$P = 1, \ell_B = \zeta_B = 1.$$

- ► *P* cyclic, $\ell_B = e$, $\zeta_B = e + \frac{|P|-1}{e}$, some e|p-1 (Brauer, Dade, '66).
- p = 2, P Klein 4-group, dihedral, semi-dihedral or generalised quaternion, ℓ_B = 1 or 3, ∃ formulae for ζ_B (Brauer, Olsson '74).
- ▶ *P* admits only the trivial fusion system (e.g. $P = C_4 \times C_2$), $\ell_B = 1$, $\zeta_B = \zeta_{kP}$ (Broué-Puig, '80).

(日) (日) (日) (日) (日) (日) (日)

Theorem (K-Koshitani-Linckelmann, 2010) If $P = C_2 \times C_2 \times C_2$, then $\zeta_B = 8$ and $\ell_B = 1, 3, 4$ or 7. What took so long? CFSG + modular analogues of Deligne-Lusztig theory.

Local-global conjectures

Brauer's first main theorem

There is a bijection $B \leftrightarrow \tilde{B}$ between the set of blocks B of kG with P as a defect group and the set of blocks \tilde{B} of $kN_G(P)$ with P as a defect group.

The bijection can be explicitly described: Write

$$\mathbf{1}_{\boldsymbol{B}} = \sum_{\boldsymbol{g} \in \boldsymbol{G}} \alpha_{\boldsymbol{g}} \boldsymbol{g}, \ \alpha_{\boldsymbol{g}} \in \boldsymbol{k}.$$

Then,

$$\mathbf{1}_{\tilde{B}} = \sum_{\boldsymbol{g} \in \boldsymbol{C}_{\boldsymbol{G}}(\boldsymbol{P})} \alpha_{\boldsymbol{g}} \boldsymbol{g}.$$

(日) (日) (日) (日) (日) (日) (日)

 \tilde{B} is the *Brauer correspondent* of *B*.

B: block of kG, \tilde{B} : Brauer correspondent of B, a block of $kN_G(P)$

Theorem (Kulshammer)

 $\operatorname{mod}(\tilde{B}) \sim \operatorname{mod}(k_{\alpha}P \rtimes E)$ for a p'-subgroup $E \leq N_{G}(P)/C_{G}(P) \leq \operatorname{Aut}(P)$ and an element $\alpha \in H^{2}(E, k^{*})$. The group *E* is the *inertial quotient* of *B*.

Weight Conjecture, abelian case (Alperin, '87)

Suppose P abelian. Then $\ell_B = \ell_{\tilde{B}}$.

(General version of Alperin's weight conjecture involves Brauer correspondents of *B* in groups $N_G(Q)$ for proper subgroups *Q* of *P*.)

The above conjecture (in the abelian case) is implied by:

Abelian Defect Group Conjecture (Broué, '88) Suppose P abelian. Then $D^{b} \text{mod}(B) \sim D^{b} \text{mod}(\tilde{B})$. **Example 2.** $G = 2M_{22}$, char(k) = 3; 4 blocks with non-trivial defect groups:

- ▶ mod(B₆) ~ mod(B₇) ~ mod(kP ⋊ C₂) (Brauer-Dade cyclic block theory '66)
- ▶ $mod(B_8) \sim mod(kP \rtimes Q_8)$ (Danz-Külshammer, 2008)
- ► The derived bounded module category D^bmod(B₉) ~ D^bmod(kP ⋊ Q₈) (Okuyama, '98)

So, abelian defect group conjecture and weight conjecture hold for $2M_{22}$, p = 3.

Abelian defect group conjecture known to hold if *P* cyclic, $P = C_2 \times C_2$ (Rickard '86), or if *P* admits only trivial fusion system (Puig '80).

In addition, weight conjecture known to hold if *P* is dihedral, semi-dihedal or generalised quaternion (Brauer-Olsson '74).

Theorem (K-Koshitani-Linckelmann, 2010)

If $P = C_2 \times C_2 \times C_2$, then $\zeta_B = 8$ and $\ell_B = 1, 3, 4$ or 7.

is really

Theorem'

If $P = C_2 \times C_2 \times C_2$, then B and \tilde{B} are isotypic. In particular, $Z(B) \cong Z(\tilde{B})$ and $\ell_B = \ell_{\tilde{B}}$.

- First case of weight conjecture for all blocks with a given defect group since conjecture was announced.
- Only known case of weight conjecture where the defect group is of wild representation type and admits non-trivial fusion.
- ► Abelian defect group conjecture still open for $P = C_2 \times C_2 \times C_2$.

Idea of proof

 $P = C_2 \times C_2 \times C_2$, \tilde{B} : Brauer correspondent of B, E: inertial quotient of B, p'-subgroup of Aut(P). (I) Theorem' is equivalent to Theorem.

- (Rouquier '97) There is a stable equivalence of Morita type between B and B.
- (II) Theorem' true if true for blocks of quasi-simple groups.
 - ► (Landrock, '81) Theorem' true unless $E \cong C_7$ or $E \cong F_{21}$ and $\zeta_B = 5, 7$.
- (III) Theorem' true for blocks of quasi-simple groups.
 - ► There are "very few" non-nilpotent blocks of kG, G a quasi-simple group which have for defect group an elementary abelian 2-group of rank ≥ 3. (Uses Fong-Srinivasan, Broué-Malle-Michel, Cabanes-Enguehard, Bonnafé-Rouquier, Geck-Hiss)